
Measure In-process Quality Page 1 of 6

Measuring and Managing In-process Software Quality

Stephen H. Kan
IBM

Rochester, Minnesota USA
skan@us.ibm.com

Abstract

Using in-process metrics to determine the quality status of a software project under development is easier
said than done. How can you interpret a test-phase defect curve correctly to reflect the true quality status
of the project? If the defect curve is below a given baseline, is this a positive sign? What if the lower
curve is due to slow progress in testing? Likewise, how does one establish meaningful metrics for
design reviews and code inspections and interpret them correctly? How about metrics for stability and
reliability?

This paper describes the Effort/Outcome Model, which is a framework for establishing and interpreting in-
process metrics in software development. The model has been validated and used on large scale
software projects in a mature software development organization. The central issue for in-process
metrics, the concept and definition of the model, and its use are discussed. Examples of metrics real-life
projects are provided.

How Do I Interpret My Defect Metrics During Testing

Defect data during the testing phase of the development process is perhaps the most widely used source
of data for in-process metrics. Metrics formed using test defect data can be the overall number of
defects, the overall defect density, or the defect arrival curve. To measure the status of in-process quality
validly, one has to interpret the in-process metrics and data correctly. Take for example the defect arrival
curve, at least several characteristics have implications to the quality status of the project: the shape and
level of the tail end of the curve, the time the curve peaks relative to when the product will be shipped,
and release to release (or “like” product) comparisons. Just the defect metrics alone, however, may not
be able to do the job (providing an accuracy status of in-process quality) adequately. What if the decline
of the defect curve is due to poor testing effort?

Effort / Outcome Model -- Testing

In order to have good confidence in interpreting test defect arrival metrics, one have to rely upon the test
effort related information. Indicators like testing effort, testing effectiveness and testing progress are
related to the effort we extended into testing, and defect rates, defect volumes, or defect arrival curves
indicate the resultant outcome based on testing effort. If we take a closer look at most in-process metrics,
we can classify them into two groups: those that measures the effectiveness or effort, and those that
indicate the outcome. We call the two groups the effort indicators (e.g., test effectiveness assessment,
test progress S curve, CPU utilization during test, inspection effort) and the outcome indicators (e.g.,
defect arrivals during testing-- total number and arrivals pattern, number of system crashes and hangs,
mean time to unplanned initial program load (IPL), inspection defect rate), respectively.

To establish good in-process metrics and to understand the in-process quality status of our software
projects, we ought to make use of both types of indicators. We can use the two concepts to form a
framework, which we call the Effort / Outcome model. The following 2 x 2 matrix (Figure 1) is a
representation of the model in terms of testing effort and defect outcome:

Measure In-process Quality Page 2 of 6

Figure1. Effort / Outcome Matrix for Testing Effort and Defect Discovery

For the four cells of the matrix:
� Cell 2 is the best-case scenario. It is an indication of good intrinsic quality of the design and code of
the software --low error injection during the development process-- and verified by effective testing.
� Cell 1 is a good/not bad scenario. It represents the situation that latent defects were found via
effective testing.
� Cell 3 is the worst case scenario. It indicates buggy code and probably problematic designs -- high
error injection during the development process.
� Cell 4 is the unsure scenario. One cannot ascertain whether the lower defect rate is due to good
code quality or ineffective testing. In general, if the test effectiveness does not deteriorate substantially,
lower defects are a good sign.

It should be noted that in the matrix, the better/worse and higher/lower designation should be carefully
determined based on release to release, or actual versus model comparisons. This effort/outcome
framework can be applied to pairs of specific metrics. With regard to testing and defect volumes (or
defect rate), the model can be applied to the overall project level and in-process metrics level. At the
overall project level, the effort indicator is the assessment of test effectiveness versus the comparison
baseline, and the outcome indicator is the volumes of all testing defects (or overall defect rate) versus the
comparison baseline, when all testing is complete. It is difficult to derive a quantitative indicator of test
effectiveness. But an ordinal assessment (better, worse, about equal) can be made via test coverage
(functional or some coverage measurements), effort (person-days in testing), extra testing activities (for
example, adding a separate phase), and so forth.

At the in-process status level, the test progress S curve is the effort indicator and the defect arrival pattern
is the outcome indicator. The four scenarios will be as follows:
� POSITIVE Scenarios:
 � The test progress S curve is the same as or ahead of comparison baseline (e.g., a previous
release) and the defect arrival curve is lower (compared with previous release). This is the Cell 2
scenario.
 � The test progress S curve is the same as or ahead of comparison baseline and the defect arrival
curve is higher in the early part of the curve -- chances are the defect arrivals will peak earlier and decline
to a lower level near the end of testing. This is the Cell 1 scenario.

� NEGATIVE Scenarios:

Cell1

Good/not bad

Cell2

Best/desirable

Cell3

Worst

Cell4
Unsure/
not acceptable

OUTCOME - Defects Rate
(Volume)

Higher Lower

Better

Worse

E
F
F
O
R
T

(Testing
Coverage

(Progress))

Measure In-process Quality Page 3 of 6

 � The test progress S curve is significantly behind and the defect arrival curve is higher (compared
with baseline) -- chances are the defect arrivals will peak later and higher and the problem of late cycle
defect arrivals will emerge. This is the Cell 3 scenario.
 � The test S curve is behind and the defect arrival curve is lower in the early part of the curve -- this
is an unsure scenario. This is the Cell 4 scenario.

Figure2. Effort / Outcome metrics – Testing Progress and Test Defect Arrivals

Figure 2 shows the in-process status of a software project via a pair of metrics on test progress and
defect arrivals. The panel on the left hand side is the test progress release to release comparison. In this
panel the curve to the left (and on top) is the test progress S curve for the current release, and the test
curve to the right is the curve for the baseline release. The panel on the right hand side is the test defect
arrival (PTR= problem tracking reports) release to release comparison. The thickest curve is the current
release. The dotted-line curve is the comparison baseline. A third curve (the thinner solid line) is also
included in the chart for reference purpose. By evaluating the pair of in-process metrics simultaneously,
we know that the test progress of the current release is ahead of the baseline release (in terms of time to
general availability (GA)), and the test defect arrivals in the first part of the curve was higher (than the
baseline release), the curves peaked earlier, and in the second part of the curve, defect arrivals declined
to a lower level (than baseline release). Therefore this is a positive scenario.

Generally speaking, outcome indicators are more common whereas effort indicators are more difficult to
establish. Moreover, different types of software and tests may need different effort indicators.
Nonetheless, the effort/outcome model forces one to establish appropriate effort measurements, which in
turn, drives the improvements in testing. For example, the metric of CPU utilization is a good effort
indicator for systems software. In order to achieve a certain level of CPU utilization, a stress environment
needs to be established. Such effort increases the effectiveness of the test. The level of CPU utilization
(stress level) and the trend of the number of system crashes and hangs are a good pair of effort/outcome
metrics.

For integration type software where a set of vendor software are integrated together with new products to
form an offering, effort indicators other than CPU stress level may be more meaningful. One could look
into a test coverage-based metric including the major dimensions of testing such as:
� setup
� install
� min/max configuration
� concurrence

-71 -67 -63 -59 -55 -51 -47 -43 -39 -35 -31 -27 -23 -19 -15 -11 -7 -3

WEEKS TO GA

PTRS

WEEKLY PTR ARRIVALS
Release-to-Release Comparison

Note: Past releases are trend li nes.

Measure In-process Quality Page 4 of 6

� error-recovery
� cross-product interoperability
� cross-release compatibility
� usability
� Double-byte character set (DBCS)

A five-point score (1 being the least effective and 5 being the most rigorous testing) can be assigned for
each dimension and the sum total can represent an overall coverage score. Alternatively, the scoring
approach can include the “should be” level of testing for each dimension and the “actual” level of testing
per the current test plan based on independent assessment by experts. Then a “gap score” can be used
to drive release-to-release or project-to-project improvement in testing. For example, assume the test
strategy for a software offering calls for the following dimensions to be tested, each with a certain
sufficiency level: setup (5), install (5), cross-product interoperability(4), cross-release compatibility (5), and
usability (4) and DBCS (3). Based on expert assessment of the current test plan, the sufficiency levels of
testing are: setup, 4; install, 3; cross-product interoperability, 2; cross-release compatibility, 5; usability, 3;
DBCS, 3. Therefore the “should be” level of testing would be 26 and the “actual” level of testing would be
20, with a gap score of 6.

For application software in the external user test environment, usage of key features of the software and
hours of testing would be good effort indicators, and the number of defects found can be the outcome
indicator. Again to characterize the quality of the product, the defect curve must be interpreted with
feature usage and effort of testing data.

Effort / Outcome Model -- Inspections

Not only the effort /outcome model can be applied to the testing phase, but it can and ought to be used
for the front end of the development process with regard to design and code inspections. The effort
variable is the amount of effort applied to inspections, which can be measured by hours of preparations
and inspections time per unit of inspection materials, or other metrics such as the extent of expertise
(experience and expertise coverage of product design and implementation of the inspectors). The
outcome variable is usually measured by the inspection defect rate (number of design or code defects
found per unit of inspection materials). Again, the classification of higher or lower (in inspections effort
and defect rate) is based on comparison of previous releases or similar projects. The four scenarios as
designed by HH, HL, LH, and LL are similar to those described in the effort/outcome matrix for testing:

� Best case scenario (HL)—high effort/low defect rate: an indication that the design/code was
cleaner before inspections, and yet the team spent enough effort in inspections, therefore better
quality was ensured.

� Good/not bad scenario (HH)—high effort/high defect rate: an indication that error injection may be
high, but higher effort spent is a positive sign and that may be why more defects were removed. If
effort is significantly higher than the model target, this situation may be a good scenario.

� Unsure scenario (LL)—low effort/low defect rate: an unsure scenario. Either the design and
code was better, therefore less time in inspection was needed; or inspections were hastily done,
hence finding fewer defects. In this scenario we need to rely on the team’s subjective assessment
and other information for a better determination.

� Worst case scenario (LH)—low effort/high defect rate: an indication of high error injection but
inspections were not rigorous enough. Chances are more latent defects remain in the design or
code.

Measure In-process Quality Page 5 of 6

Of course, in addition to the actions recommended for each scenario, the following questions, in addition
to the matrix, should be asked for each inspection:

� Have all mandatory reviewers attended?
� Were the inspectors well prepared?
� Were all materials covered?
� Was the meeting time adequate for the amount and complexity of materials?

Effort / Outcome Model – Improvement Paths

Let us revisit the matrix in Figure 1 and examine the paths of improvements across different scenarios.
Both Cell 3 (worst-case) and Cell 4 (unsure) scenarios are unacceptable from quality management’s point
of view. To improve the situation at the overall project level, the test plans have to be more effective if the
project is still at the early development cycle. Or if testing is almost complete, additional testing for extra
defect removal needs to be done. The improvement scenarios take three possible paths:
1. If the original scenario is Cell 3 (worst-case), then the only possible improved scenario is Cell 1
(good/not bad). This means achieving quality via extra testing.
2. If the original scenario is Cell 4 (unsure), then the improved scenario can be one of the following two:

� Cell 1 (good/not bad) - this means more testing leads to more defect removal, and the original low
defect rate was truly due to insufficient effort.

� Cell 2 (best-case) - this means more testing confirmed that the intrinsic code quality was good,
that the original low defect rate was due to lower latent defects in the code.

For in-process status, the way to improve the situation is to accelerate the test progress. The desirable
improvement scenario takes two possible paths:

1) If the starting scenario is Cell 3 (worst case), then the improvement path is Cell 3 to Cell 1 to
Cell 2.

2) If the starting scenario is Cell 4 (unsure), then improvement path could be:
� Cell 4 to Cell 2
� Cell 4 to Cell 1 to Cell 2

The difference between the overall project level and the in-process status level is that for the latter, Cell 2
is the only desirable outcome. In other words, to ensure good quality, the defect arrival curve has to
decrease to a low level genuinely. If the defect arrival curve stays high, it implies that there are still
substantial latent defects in the software. Testing ought to continue until the defect arrivals show a
genuine pattern of decline, not due to running of test cases in the current plan. At the project level,
because the volume of defects (or defect rate) is cumulative, both Cell 1 and Cell 2 are desirable outcome
from a testing perspective.

Examples of Effort and Outcome Indicators along the Software Development Process

As illustrated in previous sections, the effort/outcome model for establishing and interpreting in-process
metrics can and ought to be used for all phases of the development process. Figure 3 shows a list of
effort and outcome indicators for the phases along the development cycle. While some of the indicators
are quite specific, many of them need operational definitions to become workable metrics. Therefore, for
the same indicator, there could be different metrics. Development teams can specify their operational
definitions to make the indicators work in their organizations and development process.

Measure In-process Quality Page 6 of 6

Figure3. Examples of Effort and Outcome Indicators along the Phases of the Development Process

Conclusions

In this paper we described the effort/outcome model for in-process metrics and quality management. The
model goes beyond the traditional way of interpreting metrics and assessing quality when a software
development project is underway. We illustrated the use of the model for the testing phase as well as for
the front end of the development process with regard to design and code inspections. Improvement
paths were discussed and possible effort and outcome indicators that can be used along the phases of
software development life cycle were provided. The effort/outcome model and the metrics thus
established, used, and interpreted, are clearly an effective way for quality management.

References

1. Kan, Stephen H., Metrics and Models in Software Quality Engineering, Second Edition , Boston:
Addison-Wesley, 2002.
2. Kan, Stephen H., Jerry Parrish, Diane Manlove “In-Process Metrics for Software Testing”, IBM
Systems Journal , Vol 40, No.1, February 2001.
3. Jones, Capers, Applied Software Measurement, Global Analysis of Pr oductivity and Quality ,
Third Edition, New York: McGraw Hill, 2008

 Development Phase Effort Indicators Outcome Indicators
Requirements - Coverage - req analysis and reviews

- Coverage - Customer validation
- Requirements problem/issue
rate

Design - Design reviews coverage
- Design reviews - inspector-hour per
review
- Design reviews progress metrics

- Design defect rate
- Design rework indicators

Code - Code inspection coverage
- Code inspection progress metrics
- static code analysis coverage

- Inspection defect rate
- Rework indicators

Unit Test/Integration/Build - Unit test plan coverage
- test progress metrics
- static code analysis coverage
- Effectiveness/function coverage of
build verification test

- Defect metrics

FVT (Functional Verification
Test)

- Test plan function coverage/usage
- Test Progress metrics

- Overall test defect rate
- Test defect arrival pattern
- Defect backlog metrics

SVT (System Verification
Test)

- Same as FVT
- CPU utilization
- other indicators for system stress
- Coverage of business/customer usage
scenarios

- Same as FVT
- Metrics for crashes and
hangs
- Mean time between outage

Beta - Relative program progress
- % of customers on production Vs
testing
- Customer usage of functions

- Customer problem rate
- Cust. satisfaction

