Calibration With Randomly Changing Standard Curves

Article

Vecchia, Dominic F.; Iyer, Hari K.; Chapman, Phillip L.   (1989, ASQC and the American Statistical Association)   National Institute of Standards and Technology, Boulder, CO; Colorado State University, Fort Collins, CO

Technometrics    Vol. 31    No. 1
QICID: 9385    February 1989    pp. 83-90
List $10.00
Member $5.00

This article is not available online. Contact us to receive a scan of the archive, in PDF format.
New to ASQ? REGISTER HERE.

Article Abstract

Changes in calibration curves from one time to the next, caused by drift, often require measuring devices to be recalibrated at frequent intervals. In such situations the usual practice is to estimate the unknown values of test samples using only data from the corresponding calibration period. under a random coefficient regression model for the different calibration curves, however, it can be shown that it is more efficient to combine the data from all calibration periods to estimate the unknowns. We consider a particular class of point estimators obtained by inverting suitable prediction functions and show that the estimator obtained from a best prediction function is optimal in a sense defined by Godambe (1960) and Durbin (1960) in the context of unbiased estimating equations. We also compare the small-sample performance of this estimator with the usual estimator using the Pitman closeness criterion.

Keywords

Statistical methods,Random variables,Estimation


Browse QIC Articles Chronologically:     Previous Article     Next Article

New Search

Featured advertisers





ASQ is a global community of people passionate about quality, who use the tools, their ideas and expertise to make our world work better. ASQ: The Global Voice of Quality.