In this paper three-level simplex designs ofk+1 runs forkfactors are presented. Each simplex design is composed ofktreatment combinations from a two-level factorial design, plus an additional base run that represents a third level for each factor. These orthogonal, first-order designs are simple to construct. Furthermore, simplex designs can be augmented to construct second-order simplex sum designs. Such designs are particularly attractive when the experimental region of interest is spherical rather than a hypercube. It is also noted that thektreatment combinations in each simplex design coincide with the axial points in the second-order, asymmetric composite designs proposed by Box and Wilson (1951) and later discussed by Lucas (1974). Including the base point permits the inclusion of a block effect in the fitted second-order model.Key Words: Asymmetric Composite Design, Augmented Pair Design, Response Surface Methodology, Second-Order Design, Simplex Sum Design.

*By* **ROBERT W. MEE, University of Tennessee, Knoxville,
TN 37996-0532**

*INTRODUCTION*

SIMPLEX designs are saturated, orthogonal first-order designs
based on the vertices of regular geometric gures (e. g., see
Myers and Montgomery (1995, section 7.3.3)). Crosier (1996)
proposed sym-metric simplex designs, that is, simplex designs
oriented so that each factor takes the same set of levels.
While Crosier s designs were for practitioners an improvement
over other common orientations, his de-signs require five
or six factor levels for most values of the number of factors,
*k*. Such designs are rather complicated for fitting
the simple first-order model.

A symmetric simplex design with three
levels can be constructed for any value of *k* by combining
*k* axial points and a single base point. Let the axial
point for the *i _{th}* factor be

The positive and negative solutions to Equation (1) are denoted by

whereas the solution corresponding to

Note that, for

When using this simplex design as
an initial experiment, for convenience one may specify the
location and scale parameters as
= 2and *µ* = 1 so that the *k* axial points take
on the levels ± 1. For the solution _{}+
with *k* > 2, the third (base) level is within [1 , 1]. The extreme levels of the actual experimental factors are
thus assigned to the coded levels ± 1. For the solution, the
base location represents the minimum level (< -1). Further
details regarding the use of a three-level simplex as the
initial design for

sequential experimentation are presented in the next section.

It would be expected that such a
simple simplex orientation would have been noted previously.
Spendley, Hext, and Himsworth (1962) did present a three-level
simplex corresponding to the _{}-
solution above. Spendley et al. (1962) set the base location
to equal (0..., 0) and defined the other treatment combinations
of the simplex to be a distance 1 from the base, with two
positive levels for each factor. Box (1952) discussed the
consequences of different rotations of a simplex design, but
does not mention a three-level orientation.

As shown by Box and Behnken (1960),
any simplex design can be augmented to construct a second-order
rotatable design by adding all sums of the simplex runs, appropriately
scaled. For example, for the *k* = 3 simplex with _{}+
= 1, the six sums of pairs of runs are _{}
(where the radius multiplier =
8 1/4 for rotatability), and the four sums of triplets form
the foldover of the original 2 ^{3-1} design. Summing
all four of the original simplex runs produces the center
point, which we replicate *n* times. This (4 + 6 + 4+
*n*) run design corresponds to the well-known central
composite design. If one takes another simplex for *k*
= 3 having more than two-levels, a different rotatable second-order
design is obtained that does not correspond to the central
composite design. In a subsequent section, Box and Behnken
s rotatable simplex sum designs are summarized, and a class
of (non-rotatable) simplex sum designs with the minimal number
of treatment combinations is introduced. These new saturated
second-order designs are akin to Morris' (2000) augmented
pair designs, except that they have more than three levels.

The simplex and simplex sum designs are best suited for spherical regions. When the region of interest is a hypercube, the attractiveness of simplex designs is diminished. The contrast between simplex designs and saturated two-level designs over the hypercube is addressed in a separate section.

Finally, the three-level simplex
design can also be used to augment an initial two-level factorial
or fractional factorial design. When the axial points are
located in the direction of one of the original factorial
points, the factorial and simplex designs together form an
asymmetric composite design (ACD) (Lucas (1974)). It was this
application which led to the discovery of the simplex orientation
presented here. After noting that the *k* axial points
for an ACD are equidistant from one another, the base point
was positioned to achieve a simplex design. The later section
on ACDs contains more details (see also Mee (2001)).

Read Full Article (PDF, 562 KB)