Quality Assurance for Environmental Laboratories

Gary L. Johnson - U.S. EPA
Raymond G. Merrill, Jr. – ERG

September 15, 2008
Session Objectives

This Session will discuss:

• Concept of Quality for Environmental Labs
• Overview of Available Standards and Tools
• Application of QA to Environmental Labs
• Lessons Learned
Concept of Quality for Environmental Labs

• Environmental labs are an integral element of the PDCA decision process:
 – Need for environmental data -> Planning
 – Data objectives -> Planning documents
 – Field Samples -> Labs for analysis
 – Lab results -> Evaluation of results
 – Make decision -> Take action
Concept of Quality for Environmental Labs

• Quality of decisions depends on:
 – Sufficient data
 – Adequate quality (not “best”)
 – Satisfying technical and quality objectives

• Quality is best applied as a system of management and technical practices.
Concept of Quality for Environmental Labs

• Quality – Why Critical to Labs
 – Ensure that correct methods are used (QA)
 – Ensure that methods are applied correctly (QC)
 – Ensure that results meet needs and expectations (QA)
Available Tools and Standards

- Available Standards:
 - Management Systems Standards:
 - ISO 9001
 - ISO/IEC 17025
 - NELAC Standards
 - Technical Standards:
 - Reference Methods (e.g., ASTM)
 - Instrument Standards
 - Method Standards
Available Tools and Standards

• Available Tools:
 – Quality Management Plans
 – Quality Assurance Project Plans
 – Standard Operating Procedures
 – Technical and Performance Audits
 – Statistical Methods for Evaluation
 – Laboratory Information Management Systems
Application of QA

• Who’s in the Audience?
 – Engineers using Analysis Laboratories?
 – Analysis Laboratories?
 – QA Staff interested in Laboratories
Application Side Bar

• Is Sampling and Sample Collection Quality Important?
 – The need to include Sampling in the Quality Planning for Specific Projects
“Quality is best applied as a system of management and technical practices”

- Quality Systems Include (at a minimum)
 - The Big Picture - Quality Management Plans
 - The Middle Game - Laboratory Quality Plans – for a specific site or if the Laboratory is part of a bigger organization.
 - The Fine Details - Standard Operating Procedures
Developing a Quality System

• Available Tools:
 – Quality Management Plans (e.g. QA/R-2)
 • It’s a requirement!
 – Quality Assurance Project Plans (e.g. QA/R-5)
 • It’s also a requirement!
 – Should we mention NELAC (2003)
Background - Application of QA to Laboratories

• What Good is a Quality System Requirements and Guidance
 – Laboratories must think and work through the details of what quality practices to implement
 – Laboratories get guidance others have found important to include in their quality system.
 • (The Mentor/Coach Dilemma for QA/QC)
Application of QA

• How does a Laboratory use the Guidance and Tools to develop a system and practices?
 – Front End Issues
 – Implementation Issues
 – Back End Issues
Quality System Foundation

- Required practices for a QA system?
 - Quality Management Plan
 - Laboratory Specific Quality Plan
 - Needed if Laboratory is part of a larger company or organization
 - Standard Operating Procedures

- Is a QAPP required if a Lab Quality Plan exists?
Quality System Foundation

• Real Benefits of Having a Quality Management Plan
 – It orients employees to the Company its practice(s)
 • How the company see’s itself?
 • What is it’s commitment to quality?
 • How is it organized?
 • What’s important to the company?
 • Who’s in the management chain?
 • What people are responsible for management, staff, and quality?
 • How people are trained?
Front End Issues
Application of QA

• Front End Issues with the Client
 – Ensure correct methods are used (QA/PM) – Client/Lab Interface
 • How is this done?
 • Who Makes these decisions?
 • What’s the “Contract” with the Client?
Quality Decisions
Pick the Right Method

• Identify the Question (Requirements)
 – Is the method suited for the matrix?
 – How sensitive does the method need to be?
 – Is the measurement different from the blank at this sensitivity?
 • (Condensable Particulate Matter example)
 – How precise (reproducible) does the method need to be?
 – Is this the least expensive method to generate an acceptable result?
 • (Source Vent Air Example)
 – Are there multiple analytes to consider?
Front End Issues
Application of QA

• Front End Issues for the Laboratory
 – Ensure that methods are applied correctly
 (QC) Lab Management/Staff Interface
 • Who is responsible for communicating client
 needs to the staff?
 • Who is responsible for correct
 implementation of methods?
 • Who checks methods are correctly
 implemented?
Implementing the System Practical Lessons?

• What are the critical elements for a successful System?
 – Training
 • System doesn’t work unless the staff read and understand the vision.
 • System doesn’t work unless the staff take ownership and can improve the system.
 • So Who trains new staff, investing them in the Quality System?
Training Training Training

• **Systematic Training is important**
 – Training by experienced staff not as a “hand-me-down” from new staff
 – Keep the Training Pure by having experience staff train.
Implementing the System Practical Lessons

– Updates and Revisions
 • Some of the boiler plate isn’t important?
 • Who has the time or responsibility to review and revise?
 • what’s the incentive for those who implement the system?
Implementing of the System -2

• What’s Required to Implement the System
 – Sample Prep/Analysis Method Setup
 • Which comes first the setup or the SOP?
Implementing of the System - 3

• What’s Required to Implement the System
 – Method Demonstration Tools
 • Detection limits are Laboratory Specific
 • Initial Precision and Recovery/Accuracy
 • Ongoing Precision and Recovery/Accuracy
 • Secondary Source Check Samples
Detection Limit Example

• Detection Limits are often based on uncertainty (imprecision) in a method
 – How to do it … right or wrong?
 • Detection limits are a function of concentration!
 • What makes it good?
 – Control sources of variability.
 • Good MDLs promote good analysis
 – Practice controlling variability
Implementation of the System -4

- Data Reporting Demonstration
 - Initial Report Data Verification
 - Back to the Client Requirements
 - What level of detail? – Data
 - What level of detail? – Narrative
 - What Level of detail? – QC Report
 - Ongoing Report Validation
 - Who Validates the Data/Report?
 - How often is the QA Staff Involved?
Quality System Upsets

-Major Staff Changes

- Do we care about staff training files?
- Retraining is critical?
- What about for new training
 - How is retraining done
 - Who does it Example
 » New Staff Pass Down
 » Experienced Staff following Training Procedure
Quality System Upsets

- **SOP Changes** –
 - Who owns the SOP
 - Who initiates the SOP change
 - When are SOP’s changed
 - Who initiates the SOP training
 - New SOPs
 - New Methods
 - Variations of Methods
 - Tracking and Archiving SOPs
 - What Quality System applies to which Samples??
Quality System Improvements

–Major QA System Changes
 • Who communicates the change
 • QA Oversight vs. Project Management Oversight
 – Example, how to track samples/due dates/Hold Times)
 » LIMS an be messy!
 (A LIMS/QA/Project Manager issue)
Application of QA

• Quality – Why it is Critical to Labs
 – Back End Issues
 • Ensure that results meet Client and Data User needs and expectations (QA)
 • Ensure the report meets the clients requirements (QC)
 • Results that meet clients needs promote return clients
Back End QA System Issues

• Evaluation Tools
 – What they are
 • Periodic Evaluation – Technical Systems Audits
 • Data Review and Data Quality Audits
 • Performance Evaluation Samples (Audit samples)
 • Round Robin (real matrix) comparisons.
 – How are tools used
 • What tools are used when
 • Are we are missing tools?
 • What else do you need to know? (QA is a living system!)
Back End QA System Issues

- Accreditation and Audits
 - Makes a laboratory follow through with preparation of its quality plan
 - Requires verification that everyone who works for the laboratory has read the QMP and the appropriate SOPs (training)
 - Gives Outside Credibility
Back End QA System Issues

• What are significant outcomes of QA Evaluation?
 – When things don’t work you got to figure out why and make adjustments and not just report the data as invalid.

• How are these outcomes communicated to the staff.
 – How do you define continuous improvement?
Questions?