ASQ - Electronics and Communications Division

A Conceptual Model for “Inherent Reliability” for Nuclear Weapons

Abstract: 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must first be obtained from the IEEE.
Many people, when thinking about different stages of a particular device’s life vis-à-vis defectiveness, use the notion of the “bathtub curve” as a model. However this model is not fully applicable for the class of systems referred to as one-shot or single-shot systems. Key attributes of these systems are outlined in [1]: they typically stay in dormant storage until called upon for one-time use. Common examples of one-shot devices are air-bags in vehicles, fire suppression systems,certain types of safety features in nuclear power plants, missiles, thermal batteries, and some stand-by systems. This paper will focus on a particular example of one-shot systems, nuclear weapons, but the concepts presented are relevant for one-shot devices in general. A new model will be proposed as an alternative to the bathtub curve for one-shot systems. The new model includes two regimes: birth defect dominated and time-dependent dominated. A short discussion of why a bathtub curve might mistakenly be inferred is included. Finally, the relationship between inherent and estimated reliability.

Keywords: RAMS 2010 Proceedings - Failure Rate - Product Reliability - Reliability Model - Reliability Analysis/Prediction/Estimation

Already a member? Access this Content

You will need Adobe Reader to view this PDF document.
Download the free Reader from Adobe

  • Print this page
  • Save this page

Average Rating

Rating

Out of 0 Ratings
Rate this item

View comments
Add comments
Comments FAQ

ASQ News

 

RAMS 2019