Additive Manufacturing Development Methodology for Liquid Rocket Engines

Quality in the Space and Defense Industry Forum
Cape Canaveral, FL
March 8, 2016
Jeff Haynes
Aerojet Rocketdyne

Distribution Statement A: Approved for public release, distribution is unlimited
Presentation Outline

• The additive manufacturing “opportunity”

• Specific additive manufacturing process considerations

• Scale up challenges

• Aerojet Rocketdyne development and production approach

• Considerations and gaps to be closed for production
Demonstrated Benefits of Additive Manufacturing

Liquid Rocket Engine Attributes
- Low production volumes
- High complexity, compact designs
- High value = high quality levels

Additive Manufacturing
- Print parts when needed
- Complexity adds no cost
- Bulk material like wrought not cast

Heritage Saturn V F1 Gas Generator Injector

Printed F1 GG Injector (2009)

Early Demonstrated Realization of Potential
Transforming heritage engines and ... enabling new ones

- **Complex injector assemblies**
 - Reduce part count
 - Eliminates long lead forgings
 - Eliminates high touch labor machining
 - Eliminates hundreds of braze joints

- **Sheet metal parts**
 - Eliminates skilled labor forming
 - Eliminate many welds
 - Reduces part dimensional variability
 - Reduces non-conformances

- **New Designs**
 - LOX/RP thrust chamber assembly
 - Cubesat propulsion module

Demonstrated Benefits of Additive Manufacturing

- **RL10 “Printed” Injector Inlets**
- **RS-25 Ball Shaft (left)**
- **RL10 Main Injector (right)**
- **14-inch diameter**
- **Bantam “Printed” Engine**
- **After Hot Fire (No Issues)**
Demonstrated Benefits of Additive Manufacturing

Fully additive manufactured injector and **Copper** combustion chamber

- Additive Copper alloy combustion chamber with **46% increased heat transfer**
 - Design features applied to inner wall to transfer additional heat to hydrogen
 - Net effect is to shrink engine size or enable higher performance in same envelope

New Alloys (Copper) Possible Through AR Development for Thermal Management
• The additive manufacturing “opportunity”

• Specific additive manufacturing process considerations

• Scale up challenges

• Aerojet Rocketdyne development and production approach

• Considerations and gaps to be closed for production
Additive Manufacturing Development

Selective Laser Melting is...a micro-welding process

- **As built structures**
 - Columnar grain structure
 - Small defect sizes, mostly spherical
 - Fully isotropic ... once heat treated

- **Equipment differences in scan strategies**
 - Laser traverse/motion differences
 - Effects on localized thermal input
 - Effects on surface condition

- **Alloy 625 post processing**
 - Stress relief
 - Hot Isostatic Press (optional)
 - Solution Heat Treat

SLM Output is Dependent on Equipment / Scan Strategy / Post Processing
Additive Manufacturing Development

• **Operational Environment Testing**
 – Air tensile strength data shows fracture surface like wrought (ductile)
 – Testing in gaseous hydrogen performed
 – Material behaves like powder metallurgy product in response to environment testing

• **Surface Effects on Fatigue and Cleanliness**
 – Measurable HCF debit resulting from as-built surface finishes
 – Factor into design
 – Develop finishing methods
 – Build angle dependent
 – Particulate impact cleaning
Presentation Outline

• The additive manufacturing “opportunity”

• Specific additive manufacturing process considerations

• Scale up challenges

• Aerojet Rocketdyne development and production approach

• Considerations and gaps to be closed for production
Additive Manufacturing Development

Scale Up Equipment Differences

- Last ~6 years 10-inch cubes to 400W

- Concept Laser X Line 1000R
 - 6X volume increase from M2
 - 1000W laser
 - AR owns 3 (two are Title III assets)

- EOS M400
 - 4X volume increase from M280
 - 1000W laser
 - AR owns 1 (Title III asset)

Scale Up to Larger Sizes is Just Beginning
Equipment Delivery and Installation

• **Title III Team:** Aerojet Rocketdyne – Prime Contractor
 – University of Tennessee / ORNL
 ➢ Concept Laser X Line #1
 ➢ Al-10SiMg
 – Aerojet Rocketdyne
 ➢ Concept Laser X Line #2
 ➢ IN718
 – Atlantic Precision, Inc.
 ➢ EOS M400
 ➢ Copper

• **Goal:** Demonstrate ability to produce an alloy on large scale SLM machines with robust material capability and component design tolerances and non-destructive inspection validation.

Long Lead Machine Procurement and Installation Complete
EOS M400

- Machine checkout with IN718 (EOS Parameters)
- Transition to Inco 625 study and material screening program
- Cleaned and transition to copper powder

EOS M400 Transition to Inco 625 Demonstration

Distribution Statement A: Approved for public release, distribution is unlimited
EOS M400

- Subscale Copper work on M280 successful
- Transition to M400 machine for full scale demonstrations
Aluminum X Line 1000R

- SLM Aluminum material property evaluation in process (Al-10Si-0.3Mg)
 - Structural margins to retain factor of safety require some added material
 - Full characterization of properties on X Line in process
• RS-25 (Space Shuttle Main Engine) need for large SLM IN718
 • Scaling from Concept Laser M1 machine capability
 • X Line requires significant process optimization for IN178 alloy

20+ Different part numbers in engine apply

Large IN718 Additive Flanges Contribute to Cost Savings
• The additive manufacturing “opportunity”

• Specific additive manufacturing process considerations

• Scale up challenges

• Aerojet Rocketdyne development and production approach

• Considerations and gaps to be closed for production
Development Approach for AM at AR

Enterprise Additive Manufacturing Team (AMT)

Parameters & Specifications
- Process Control
- Source Approvals

Material Testing
- Design Curves
- New Product Form
- Design Allowables

Process Limits
- Design Options

NDT
- Standard Work
- New Capabilities

Component Validation

Refine OEM Machine Parameters

All Relevant Environments and Failure Modes

Modified NDE Methods

Machine types are all independent and this process is followed for a specific model

Aerojet Rocketdyne Approach to Additive Manufacturing for AEROSPACE Grade Material

Distribution Statement A: Approved for public release, distribution is unlimited
Presentation Outline

• The additive manufacturing “opportunity”

• Specific additive manufacturing process considerations

• Scale up challenges

• Aerojet Rocketdyne development and production approach

• Considerations and gaps to be closed for production
Defect Inspection Limitations

- Complex part designs now possible with AM introduce dilemma on how to inspect for volumetric flaws/defects
 - Surface finish (as-built) limits penetrant inspection and cleaning
 - No longer have forging shapes to UT or X-Ray
 - Complex shapes preclude most NDE methods from full access
 - Typical AM defects are spherical, not linear
 - First article inspection + CT likely
 - *Process control may be only path forward*

Thickness and Geometry Limit X-ray Effectiveness

Image intentionally Distorted (AR IP)
Defect Statistical Analysis

• Statistical Defect Study for Nominal Processing
 – Database will be used to validate process control
 – Correlation of statistical defect population on material properties
 – Fracture data generated to establish critical flaw size limitations
 – Focused NDE methods in areas where critical flaw locations would exist

Gaseous Hydrogen Burst Test SLM Inco 625 Part

Statistical Defect Analysis Helps Drive Inspection Requirements and Part Acceptance

Distribution Statement A: Approved for public release, distribution is unlimited
Defect Statistical Analysis

- **Statistical Analysis Results**
 - Surface and sub-contour anomalies are statistically significant and larger than bulk material defects
 - Part geometries and machines are not statistically significantly different
 - Same machine model used - does not show variation (AFRL program)

Surface Defects are Largest and Different Machines Produced Similar Defects
Summary

- Liquid Rocket Engines fit an ideal model for Additive Manufacturing insertion due to low production volumes, high complexity and a shrinking conventional manufacturing service sector.

- Additive Manufacturing development at Aerojet Rocketdyne has focused on alloy parameter optimization, material characterization in relevant environments and geometry optimization studies.

- Risk-based approach, leading to component and system level demonstrations, is critical to ensure full understanding of new production form (Additive Manufacturing).

- Process control in absence of full volumetric inspections will be critical acceptance criteria.